57. Liquidus and Solidus Studies. Part II. The Ternary System KNO₃-NH₄NO₃-Pb(NO₃)₂.

By H. M. GLASS, K. LAYBOURN, and W. M. MADGIN.

STUDYING the system potassium nitrate-ammonium nitrate, Perman and Saunders (J., 1923, 123, 841) found a mixture of minimum f. p. $(13.6\% \text{ KNO}_3 \text{ by weight})$; they examined

solids separating from various mixtures, and stated : "By analysis the crystals separating have been shown to be ammonium nitrate below 13.6% potassium nitrate, and a little above that concentration mixed crystals of the two nitrates with about 45% of the potassium salt." Such a system seems remarkable in showing complete solid immiscibility in mixtures rich in ammonium nitrate (55-100%), although the two component salts are isomorphous.

Jänecke (Z. angew. Chem., 1928, 41, 916) found that the system showed partial solid miscibility, with a large miscibility gap between 92.5% and 1.5% ammonium nitrate, but later Jänecke, Hamacher, and Rahlfs (Z. anorg. Chem., 1932, 206, 357) concluded that the extent of solid miscibility is much greater, their limits being 92%and 60% ammonium nitrate.

The conclusions of all of the foregoing authors were formed from the study of binary systems.

Recently, Laybourn and Madgin (J., 1932, 2582) investigated the system potassium nitrate-sodium nitrate by studying a ternary system involving these salts, and this method seemed applicable to the system potassium nitrate-ammonium nitrate; accordingly, the ternary system of this salt pair in lead nitrate has been investigated. Lead nitrate was chosen as the third component since it appears to be inert towards both potassium nitrate (Glass, Laybourn, and Madgin, J., 1932, 874) and ammonium nitrate (Bogitsch, Compt. rend., 1915, 161, 790), and is thus a suitable solvent.

FIG. 1. Freezing point-composition diagrams for the system KNO₃-NH₄NO₃-Pb(NO₃)₂.

EXPERIMENTAL.

Purification of KNO₃ and Pb(NO₃)₂ was carried out as previously described (*loc. cit.*). NH_4NO_3 (A.R. quality) was recryst. thrice from H_2O and dried in an air-oven at 120°.

The scope of the present investigation is limited by the volatility of NH_4NO_3 , but as this is considerably diminished by dilution with other nitrates (cf. Bogitsch, *loc. cit.*), it was possible

to investigate ternary mixtures of f. p. up to 250° . Below this temp., the decomp. of $Pb(NO_3)_2$ (Laybourn and Madgin, J., 1932, 1360) need not be considered.

The f. p. data for the three binary systems were required : results previously determined for $KNO_3-Pb(NO_3)_2$ (*loc. cit.*) have been used, but redeterminations have been made for the other two systems.

Freezing Points and Isotherms for Ternary Mixtures.—The f. p.'s of 64 different ternary mixtures (see inset A, Fig. 2) have been found as described by Laybourn and Madgin (J., 1932, 2582) and the isothermal diagram has been constructed (Fig. 2). Fig. 1 shows a series of curves, representing the f. p.'s of mixtures containing various const. percentages of $Pb(NO_3)_2$, and is included as additional evidence of the nature of the system $KNO_3-NH_4NO_3$.

The comp. of the mixture of lowest f. p. was found to be 12% KNO₃, 32% Pb(NO₃)₂, and 56% NH₄NO₃ (f. p. 127.5°).

Freezing-point isotherms in the ternary system KNO₃-NH₄NO₃-Pb(NO₃)₂.

Examination of Solid Phases.—Samples of the solid phases separating from mixtures lying on the isothermals 150°, 160°, and 190° were isolated by the method of Laybourn and Madgin (*loc. cit.*), and samples of the liquids in equilibrium with these solids were also obtained. All of these samples were analysed by determining NH_4 by Kjeldahl's method, Pb as PbCrO₄, and K as KClO₄. These analytical results are shown in Table I and plotted in Figs. 3 and 4, where the conjugate solid and liquid phase compositions are joined by tie lines.

The isotherms 150° and 160° were chosen in view of the results reported by Jänecke, Hamacher, and Rahlfs (*loc. cit.*), who found a eutectic point at 157° , and it was anticipated that the isotherms should give valuable information concerning the limits of the miscibility gap near to the eutectic temp. As a high-temp. example the isotherm 190° was studied.

Discussion of Results.—The nature of the binary system NH_4NO_3 -KNO₃ was the primary problem under consideration. Fig. 1 shows that the well-defined minima are of the usual type for two substances which form a eutectic system; Fig. 2 similarly shows a well-defined eutectic trough (AE, inset B). Figs. 3 and 4 show very definitely that the system NH_4NO_3 -KNO₃ is of the solid-solution type, and it must be concluded that the

Liquid phase.		Solid phase.		Liquid	phase.	Solid phase.		
Рb(NO ₃) ₂ , %.	NH₄NO₃, %.	Pb(NO ₃) ₂ , %.	NH₄NO₃, %.	Pb(NO ₃) ₂ , %.	NH₄NO₃, %.	Pb(NO ₃) ₂ , %.	NH₄NO₃, %.	
A. Mixtu	ires located	on the isother	rm 150°.	B. Mixtures located on the isotherm 160°.				
$18.92 \\16.91 \\15.92 \\14.87 \\13.96 \\14.11 \\15.41 \\21.89 \\26.13 \\33.52$	78.5478.0277.1977.2877.1474.2472.0760.9954.5243.47	$9 \cdot 92$ $10 \cdot 04$ $8 \cdot 98$ $7 \cdot 09$ $8 \cdot 49$ $8 \cdot 01$ $9 \cdot 99$ $16 \cdot 29$ $21 \cdot 40$ $24 \cdot 98$	$\begin{array}{c} 88\cdot10\\ 84\cdot93\\ 84\cdot84\\ 85\cdot60\\ 83\cdot52\\ 69\cdot00\\ 67\cdot48\\ 55\cdot40\\ 48\cdot82\\ 33\cdot41 \end{array}$	$11 \cdot 52 \\ 7 \cdot 27 \\ 3 \cdot 53 \\ 1 \cdot 96 \\ 2 \cdot 49 \\ 4 \cdot 03 \\ 17 \cdot 06 \\ 34 \cdot 46 \\ 40 \cdot 01 \\ 40 \cdot 02$	$\begin{array}{c} 86{\cdot}54\\ 86{\cdot}88\\ 87{\cdot}01\\ 87{\cdot}02\\ 81{\cdot}76\\ 79{\cdot}98\\ 63{\cdot}09\\ 38{\cdot}71\\ 36{\cdot}62\\ 46{\cdot}41 \end{array}$	$\begin{array}{c} 7\cdot 24 \\ 4\cdot 96 \\ 2\cdot 64 \\ 1\cdot 29 \\ 1\cdot 97 \\ 3\cdot 10 \\ 12\cdot 23 \\ 25\cdot 81 \\ 61\cdot 71 \\ 63\cdot 79 \end{array}$	91.03 90.33 89.09 89.31 76.02 73.42 57.20 28.60 23.70 28.49	
38.12	50.30	68.07	26.11	40.00	55.66	62.31	34.89	
		C. Mixt	tures located	on the isothern	n 190°.			
8·32 26·46 40·13	$62.03 \\ 39.97 \\ 21.87$	$5.92 \\ 18.01 \\ 26.56$	50 ·94 29·50 14·82	44·93 45·02	23·12 47·98	$64 \cdot 49 \\ 61 \cdot 62$	15·01 33 ·51	

TABLE I.

FIG. 3.

Liquidus-solidus conjugation lines in the ternary system KNO3-NH4NO3-Pb(NO3)2. (Isotherm 150°.)

eutectic minima are due to partial miscibility of solid solutions. In Fig. 3 it is evident that there is a wide range of solid miscibility extending from 100% KNO₃ to about 35% KNO₃ on the one side, whilst in NH₄NO₃-rich mixtures the degree of miscibility is small, only 100-92% NH₄NO₃. The other results (Fig. 4) support these conclusions, and in particular, the 160° isotherm results confirm the extent of the miscibility gap. It is considered that this interpretation of the present results affords strong support for the conclusions of Jänecke, Hamacher, and Rahlfs (*loc. cit.*), and it appears that the miscibility gap is of

practically the same extent at both 150° and 160° . There is no evidence that pure ammonium nitrate separates from molten mixtures rich in this salt, as claimed by Perman and Saunders (*loc. cit.*), and it seems probable that their method of analysing the crystals separating from binary mixtures is unsatisfactory. Evidently the Schreinemakers principle as here applied is a more satisfactory means of investigating binary systems, and a high degree of accuracy is claimed for the present results. A large number of mixtures, covering a wide range of composition, has been examined, and this enhances the value of the results now reported.

Frg. 4. Liquidus-solidus conjugation lines in the ternary system KNO₃-NH₄NO₃-Pb(NO₃)₂. (Isotherms 160° NH₄NO₃ 160°

The simple eutectic nature of the other two binary systems $\text{KNO}_3-\text{Pb}(\text{NO}_3)_2$ and $\text{NH}_4\text{NO}_3-\text{Pb}(\text{NO}_3)_2$ involved in this investigation is very evident from Figs. 2, 3, and 4, and calls for no further comment.

SUMMARY.

(1) The liquidus surface of the system $\text{KNO}_3-\text{NH}_4\text{NO}_3-\text{Pb}(\text{NO}_3)_2$ has been investigated. The ternary mixture of lowest freezing point has the following composition (weight %) : KNO_3 , 12; $\text{Pb}(\text{NO}_3)_2$, 32; NH_4NO_3 , 56. The f. p. is $127 \cdot 5^\circ$.

(2) Solids separating from various mixtures on the 150° , 160° , and 190° isotherms have been analysed, and it has been concluded that potassium and ammonium nitrates form a discontinuous series of solid solutions with a break in the solid miscibility between 8% and 35% of the former. This agrees with the thermal analysis of Jänecke, Hamacher, and Rahlfs (*loc. cit.*) on the binary system.

University of Durham, Armstrong College, Newcastle-upon-Tyne.

[Received, January 7th, 1933.]

TABLE OF ATOMIC WEIGHTS ISSUED IN 1932 BY THEINTERNATIONAL UNION OF CHEMISTRY

	Sym-	At.			Sym-	At.	
	Ďol.	No.	At. wt.		Ďol.	No.	At. wt.
Aluminium	Al	13	26.97	Neodymium	Nd	60	144.27
Antimony	Sb	51	121.76	Neon	Ne	10	20.183
Argon	Α	18	39.944	Nickel	Ni	28	58.69
Arsenic	As	33	74.93	Niobium	Nb		
Barium	Ba	56	137.36	(Columbium)	(Cb)	41	93.3
Bervllium	Be	4	9.02	Nitrogen	N,	7	14.008
Bismuth	Bi	83	209.00	Osmium	Ôs	$\overline{76}$	190.8
Boron	B	5	10.82	Oxvgen	õ		16.0000
Bromine	Br	35	79.916	Palladium	Рď	46	106.7
Cadmium	Čđ	48	112.41	Phosphorus	P	15	31.02
Cæsium	Cs	55	132.81	Platinum	Pt	78	195.23
Calcium	Ca	20	40.08	Potassium	ĸ	19	39.10
Carbon	C	6	12.00	Praseodymium	Pr	59	140.92
Cerium	Če	58	140.13	Radium	Ra	88	225.07
Chlorine	cĩ	17	35.457	Radon	Rn	86	220 01
Chromium	Cr	24	52.01	Rhenium	Re	75	186.31
Cobalt		27	58.04	Rhodium	Rh	45	109.01
Copper	C11	20	63.57	Rubidium	Rh	27	85.44
Dyeprosium		66	169.46	Ruthenium	Ru	11	101.7
Erbium	Er	68	167.64	Samarium	Sm	69	150.43
Europium	E1	63	159.0	Scandium	Sa	02 91	45.10
Fluorine	E Lu	ů ů	10.00	Selenium	So	21	70.9
Cadalinium	C d	64	157.9	Silicon	56	14	19.7 98.06
Collium	Gu	21	60.79	Silvor		14	20.00
Cormonium	Ga	20	79.60	Sodium	No	4/	99.007
	4	34 70	12.00	Strontium	Ina Se	11	22.991
Usfnium	HU LIF	79	197.2	Sulphur	51	00 10	87.03 99.06
Hallium		14	1/0.0	Tantalum	.Э Та	10	32.00
	пе	67	4.004	Tallalulli	Ta To	13	181.4
Hommun		07	103.9	Tenunum	TE	02 67	127.9
Indium	П Im	1	1.0018	The line		00	109.2
	T	49	114.9			81	204.39
	1 T	03 77	120.932		In T	90	232.12
	II T	11	193.1		Im	69 50	169.4
	re	20	00.84	1 III	Sn	50	118.70
Krypton	Kr	30	83.7	Titanium	11	22	47.90
Lanthanum	La	57	138.90	lungsten	W	74	184.0
	PD	82	207.22	Uranium	U	92	238.14
		3	6.940	Vanadium	V	23	50.95
Lutecium	Lu	71	175.0	Xenon	Xe	54	131.3
Magnesium	Mg	12	24.32	Ytterbium	Yb	70	173.5
Manganese	Mn	25	54.93	Yttrium	Y	39	88.92
Mercury	Hg	80	200.61	Zinc	Zn	30	65.38
Molybdenum	Mo	42	96·0	Zirconium	Zr	40	91.22